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Outline

e Preprocessing

— Histogram
— Normalization
— Combining Images

— Spatial Averaging
e Matching and Detection

— Correlation

— Matched Filtering
e Feature Extraction

— Contour/Edge Detection
e Segmentation

— Variational Thresholding

— Connected-Component Labeling



Preprocessing

e Histogram

e Normalization

e Combining Images
e Spatial Averaging

— Linear Smoothing

— Median Filtering



Graylevel Histogram

Input image: rlk] with keQ={0,.... K -1} x{0,...,L—1}
Total number of pixels: #{) = KL

e Graylevel distribution

p.d.f. p(r) with / p(r)dr =1
— 00 p(?“)
e Histogram A P

Quantized graylevels: {0,1,2,..., N — 1} 4 T T T
n;: number of pixels with graylevel 7 B > T
P(i) = P probability of graylevel i N-1

#0 p(r) = 3 P(i)s(r — i)

i=0

e Probability mass function (p.m.f.)



Examples of Histograms

What can we do with these histograms?

e Reading the histogram can tell us about:
— Dynamic range
— Potential saturation problems

— Average intensities of background and objects



Normalization: Linear Contrast Adjustment

Linear transformation /system: T{ f}|k] = a(f|k]—73) with parameters a;, 8 € R

How to we implement full dynamic-range contrast stretching?

255
maxp{ f[k]} — ming{ f[K]}

B=min{flk] : keQCZ? a=

e Image normalization

Average graylevel Variance
1 9 1 2
p= o > f1K] ot = = SOl - )
#4 = e

+0b

Normalized image statistics: T{f} k] =a (f[k]a_ M)

“zero mean and unit variance”



Localized Normalization

Compensation of non-uniformities across the image;
e.g., shading, nonuniform background, changes in illumination

e Normalization over a sliding window: l—>Slidingwindow
flk] — alk]
k| = - b
ok = (P55
ilk] = 3, wln] fln— k S wik] = 1
f
__| | smoothing >g+ S| = _g>
filter -
v _ 1
e ] v

https://bigwww.epfl.ch/demo/ip/demos/local-normalization/

Smoothing filter implements local averaging = Estimation of local statistics



Combining Images

e Averaging for noise reduction:

||
u}—\
=

— Independent noisy observations: f;|k] = s|k| + n;|k], 1
— Hypotheses:
(i) Elfilk]] = slk] = E[ni[k]] =0

(i) i.i.d. noise at each location k= var(f;[k]) = var(n;[k]) = o

N
- 1
— Noise reduction procedure:  f[k] = ~ Zfi k|
i=1

Exercise: Determine the mean and variance of f[k]

Mean: E[f[k]] = s[k] Variance: var(f[k]) = 0?/N

Central limit theorem: for large N, f[k] ~ N (s[k],0?/N)



Example: Noise Reduction

20 electron micrographs of a virus capsomere

Capsomer

Head «=

gp24* vortex«
gp20 vortex i
Tail +—3&

Result of averaging:

Practical problems
— Image registration

— Detection of outliers




Spatial Averaging: Linear Smoothing

Linear smoothers = Low-pass filters

e Finite-impulse response (FIR)

Moving average

1/9
1/9
1/9

1/9

1/9

1/9

1/9]
1/9

1/9

1/8

1/2

1/8

e Infinite-impulse response (IIR)

— Symmetric exponential

— Gaussian filter

e Main uses

— noise reductions (high frequencies)

g=~hxfwith >  hlk] =1

e Limitations

— Blurring of edges
and image details

How do we get around this?

Nonlinear operations

— estimation of local statistics (mean, variance)
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Spatial Averaging: Median Filter

glk] = median{flk —n] : n € W}

Input (200 x 200) 5 X 5 median filtered
e Advantages
— Tend to preserve contours better than linear smoothers

— Good for impulsive or heavy-tailed (non-Gaussian) noise

e Limitations
— Computationally costly for large sizes of neighborhoods

— Breaks down when there is a majority of noisy pixels
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Impulsive-Noise Reduction Experiment

3 X 3 moving average 5 X 5 moving average 5 X 5 median

12



Matching and Detection

e Template Matching

— Problem Definition

— Correlation
e Matched-Filter Detection
e Application Areas

— Object Detection

— Automated Inspection
— Data Fusion

— Registration

— Motion Compensation
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Template Matching

e Problem definition
— Reference pattern, target, or template: f.|k], k € €,
— Test image: flk|, k € Qy
— Common support 2 = Q2 NQ, # O
— How do we decide whether or not f and f, are similar?

— Given a collection of templates f;, : =1,..., N (e.g., shifted versions of
some reference template), how do we select the best match?

Exercise: Come up with a concrete instantiation of this sort of problem
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Correlation Measures

e Basic correlation

Z flklfrlk] = (f, fr) ¢ (9)-inner product

keQ
How is maximizing the correlation related to the similarity between f and f,.7

Similarity = distance = || f — f,|l2()

If = fellfey = (F = fos f = fr)
= 1 fllz ) + 1follgqy — 2(F, fr)

= constant — 2(f, f,) increasing correlation decreases distance

|f - fH?g(Q) is minimum < (f, f-) is maximum
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Correlation Measures (cont’d)

What if our template and test image have different intensity ranges?

e Centered correlation average value
7 RN F 7 _ 1
(F=Ffr =) = %;(f[k] ) (fr[k] = fr) 9= 3 2 9

e Normalized correlation coefficient

<_f_f7fr_f7:> <1
If = flle@llfr = frllez@ —

Invariant to linear amplitude scalings: af + b
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Matched-Filter Detection

e Measurement model (signal + noise): flk| = s|k — ko] + n|k]

s: known deterministic template or pattern
n: additive white noise with zero mean and variance o2

ko: unknown template location E[f|k]] = s|lk — ko]

e Goal: Design a correlation-like detector

glk] = (h* f)[K]
= > hn]flk—n] = ) wn]flk+n]
nez2 nez2
“convolution” “correlation”

where w|k| = h|—k]
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Matched-Filter Detection

e Optimal detector: Maximizes SNR at k& = kg

Solution: w|k] = s|k| (matched filter)

(technically, w|k| = « s|k] is fine, for any a € R)

Proof:
‘signal”  Expected output at k = ko Z win
nez?
p— <’U} S>
(S:flu‘j‘ref') Variance output var(g Z w(n var
noise 7.2
nec
(w, s)
SNR at k = kg: SNR =
o l|wlle2(z2)

Maximized when w|k| = a s|k]

ko—ko—l—’n]

k+n]) = o |wl|f gz
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Pattern Detection by Template Matching

f matched filter g

> hK] = s[—k] » peak detector

e Application: Line detector

Template Matching with a
3*3 kernel




Pattern Detection by Template Matching

Reference template (33 x 31 pixels) 3]

(x,y) = (149, 95)
o = 100%

(z,y) = (98,123)
p = 88%

(z,y) = (58,61)
p = 33%

20



Feature Extraction

e Edge detection

Edges are important clues for the interpretation of images;
they are essential to object recognition

— Edges: Analog formulation

— Gradient-based edge detection
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Edges: Analog Formulation

What is an edge?

Definition: An edge point is a location of abrupt change in an image

Y

Image value at location x: f(x)

V)
V()]

= direction of maximum change

Y

Normal vector: n =

A f//(a:)

Y
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Gradient and Directional Derivatives

o Gradient of f at @ = (z,y): Vf(x) = (af(‘"”), af(f”)) — (f1(), f2(2))

Ox oy

e Directional derivative of f along the unit vector ug = (cos 8, sin )

f(CU + Eu@) — f(:c) Taylor-series argument:

Dy, f(x) = lim

e—0 e
= fi(ax)cos O + fo(x)sind
= uy V f(x)

Exercise: What is max Do, f(x) ?

max = D, f(x) = |Vf(@)|2 = V/fi(x)2 + fox)?

fx+eu)= f(x) +eu'Vf(x)+ O(e?)

0" = Z(Vf(x)) = arctan (fQ(w)) + km,k € Z (L to edge)

fi(z)



General Criteria for Edge Detection

e Maximum of the gradient
e Zero crossings of the second-order (directional) derivative

e Combination of both

Remarks:

— Gradient magnitude and Laplacian are rotationally invariant, while
gradient vectors and directional second-order derivatives are not

— Derivatives are usually estimated on a smoothed version of the image
to improve robustness and/or reduce the effect of noise
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Gradient-Based Edge Detection

How do we design discrete filters that mimic gradients?

e Discretized gradient operators

0, ~ 1 0 _ 1
Horizontal derivative: g1|k| = (hy * f)|k] 2 2
1
Vertical derivative: go|k] = (ho * f)|k] 0. ~ (2)
y
_1
\/91 4+ ga |k :

g2 k|
f0lk| = arctan -
K (91 k>

e Threshold-based edge detection

17 g[kla kQ] > T
edgelk] = {O else
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Canny’s Edge Detection Algorithm

e Refinements:

— Non-maxima suppression: Using knowledge of 0|k]|

— Intelligent thresholding

g1

-
ho

>

g2

\/ 91 + 95

Non-maxima

suppression

i

—>

arctan(gz/g:)

[9

Threshold

edge map
—

https://bigwww.epfl.ch/demo/ip/demos/edgeDetector/
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Image Segmentation

e Segmentation: Art or Science?
e Amplitude Thresholding

— Variational Thresholding
— Statistical Thresholding

e Binary Segmentation Techniques
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What is Segmentation?

e Definition Image f|k], with k € Q

Image segmentation: Find a partition of the support {2 of the image f, with

Q=) with Q;NQ; = fori#j N
) QQ

such that the regions (2; satisfy some

homogeneity (and connectivity) criterion. Qo

The total number of regions is not necessarily known

e Three main approaches (not based on deep learning)
— Pixel classification
— Region-based segmentation

— Boundary-based segmentation = Edge detection
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Segmentation: Art or Science?

Problem: lack of a universal definition of homogeneity
= many application-specific approaches

e Approaches for specifying homogeneity
— Empirical (e.g., similar graylevels; feature maps)

— Statistical, based on some a priori model
(e.g., constant mean + additive white noise)

e Approaches for enforcing connectivity (if required)

— Prior information about object size or shape
— Joint probability model for class labels

— Contour length
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