# ECE 172A: Introduction to Image Processing Image Processing Tasks: Part I

Rahul Parhi Assistant Professor, ECE, UCSD

Winter 2025

### **Outline**

- Preprocessing
  - Histogram
  - Normalization
  - Combining Images
  - Spatial Averaging
- Matching and Detection
  - Correlation
  - Matched Filtering
- Feature Extraction
  - Contour/Edge Detection
- Segmentation
  - Variational Thresholding
  - Connected-Component Labeling

# Preprocessing

- Histogram
- Normalization
- Combining Images
- Spatial Averaging
  - Linear Smoothing
  - Median Filtering

## **Graylevel Histogram**

Input image:  $r[{\pmb k}]$  with  ${\pmb k}\in\Omega=\{0,\ldots,K-1\}\times\{0,\ldots,L-1\}$ 

Total number of pixels:  $\#\Omega = KL$ 

Graylevel distribution

p.d.f. 
$$p(r)$$
 with  $\int_{-\infty}^{\infty} p(r) dr = 1$ 

Histogram

Quantized graylevels:  $\{0, 1, 2, \dots, N-1\}$   $n_i$ : number of pixels with graylevel i

$$P(i) = \frac{n_i}{\#\Omega}$$
: probability of graylevel  $i$ 

Probability mass function (p.m.f.)



$$p(r) = \sum_{i=0}^{N-1} P(i)\delta(r-i)$$

## **Examples of Histograms**









What can we do with these histograms?

- Reading the histogram can tell us about:
  - Dynamic range
  - Potential saturation problems
  - Average intensities of background and objects

## Normalization: Linear Contrast Adjustment

Linear transformation/system:  $T\{f\}[k] = \alpha(f[k]-\beta)$  with parameters  $\alpha, \beta \in \mathbb{R}$ 

How to we implement full dynamic-range contrast stretching?

$$\beta = \min\{f[\mathbf{k}] : \mathbf{k} \in \Omega \subset \mathbb{Z}^2\} \qquad \alpha = \frac{255}{\max_{\mathbf{k}}\{f[\mathbf{k}]\} - \min_{\mathbf{k}}\{f[\mathbf{k}]\}}$$

Image normalization

Average graylevel

$$\mu = \frac{1}{\#\Omega} \sum_{\mathbf{k} \in \Omega} f[\mathbf{k}]$$

Variance

$$\sigma^2 = \frac{1}{\#\Omega} \sum_{\mathbf{k} \in \Omega} (f[\mathbf{k}] - \mu)^2$$

Normalized image statistics: 
$$T\{f\}[k] = a \left(\frac{f[k] - \mu}{\sigma}\right) + b$$

"zero mean and unit variance"

#### **Localized Normalization**

Compensation of non-uniformities across the image; e.g., shading, nonuniform background, changes in illumination

Normalization over a sliding window:

$$g[\mathbf{k}] = a \left( \frac{f[\mathbf{k}] - \tilde{\mu}[\mathbf{k}]}{\tilde{\sigma}[\mathbf{k}]} \right) + b$$



$$\tilde{\mu}[\mathbf{k}] = \sum_{\mathbf{n}} w[\mathbf{n}] f[\mathbf{n} - \mathbf{k}]$$

$$\sum_{k} w[k] = 1$$



https://bigwww.epfl.ch/demo/ip/demos/local-normalization/

Smoothing filter implements local averaging  $\Rightarrow$  Estimation of local statistics

## **Combining Images**

- Averaging for noise reduction:
  - Independent noisy observations:  $f_i[\mathbf{k}] = s[\mathbf{k}] + n_i[\mathbf{k}], \quad i = 1, \dots, N$
  - Hypotheses:
    - (i)  $\mathbf{E}[f_i[\mathbf{k}]] = s[\mathbf{k}] \implies \mathbf{E}[n_i[\mathbf{k}]] = 0$
    - (ii) i.i.d. noise at each location  $k \Rightarrow var(f_i[k]) = var(n_i[k]) = \sigma^2$
  - Noise reduction procedure:  $ar{f}[m{k}] = rac{1}{N} \sum_{i=1}^N f_i[m{k}]$

**Exercise:** Determine the mean and variance of  $\bar{f}[k]$ 

Mean:  $\mathbf{E}[\bar{f}[\mathbfit{k}]] = s[\mathbfit{k}]$  Variance:  $\mathrm{var}(\bar{f}[\mathbfit{k}]) = \sigma^2/N$ 

Central limit theorem: for large N,  $\bar{f}[k] \sim \mathcal{N}(s[k], \sigma^2/N)$ 

## **Example: Noise Reduction**

#### 20 electron micrographs of a virus capsomere





Result of averaging:



Practical problems

- Image registration
- Detection of outliers

## **Spatial Averaging: Linear Smoothing**

Linear smoothers = Low-pass filters g = h \* f with  $\sum_{k} h[k] = 1$ 

$$g = h * f$$
 with  $\sum_{\mathbf{k}} h[\mathbf{k}] = 1$ 

Finite-impulse response (FIR)

Moving average

$$\begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1/8 & 0 \\ 1/8 & 1/2 & 1/8 \\ 0 & 1/8 & 0 \end{bmatrix}$$

- Infinite-impulse response (IIR)
  - Symmetric exponential
  - Gaussian filter
- Main uses
  - noise reductions (high frequencies)
  - estimation of local statistics (mean, variance)

- Limitations
  - Blurring of edges and image details

How do we get around this?

Nonlinear operations

## Spatial Averaging: Median Filter

$$g[k] = \text{median}\{f[k-n] : n \in W\}$$





Input  $(200 \times 200)$ 



 $5 \times 5$  median filtered

#### Advantages

- Tend to preserve contours better than linear smoothers
- Good for impulsive or heavy-tailed (non-Gaussian) noise

#### Limitations

- Computationally costly for large sizes of neighborhoods
- Breaks down when there is a majority of noisy pixels

# Impulsive-Noise Reduction Experiment



## **Matching and Detection**

- Template Matching
  - Problem Definition
  - Correlation
- Matched-Filter Detection
- Application Areas
  - Object Detection
  - Automated Inspection
  - Data Fusion
  - Registration
  - Motion Compensation

## **Template Matching**

#### Problem definition

- Reference pattern, target, or template:  $f_r[k]$ ,  $k \in \Omega_r$
- Test image:  $f[{m k}]$ ,  ${m k} \in \Omega_f$
- Common support  $\Omega = \Omega_f \cap \Omega_r \neq \emptyset$
- How do we decide whether or not f and  $f_r$  are similar?
- Given a collection of templates  $f_i$ , i = 1, ..., N (e.g., shifted versions of some reference template), how do we select the best match?

Exercise: Come up with a concrete instantiation of this sort of problem

#### **Correlation Measures**

Basic correlation

$$\sum_{\mathbf{k}\in\Omega}f[\mathbf{k}]f_r[\mathbf{k}] = \langle f, f_r \rangle$$

 $\ell^2(\Omega)$ -inner product

How is maximizing the correlation related to the similarity between f and  $f_r$ ?

Similarity = distance = 
$$||f - f_r||_{\ell^2(\Omega)}$$

$$||f - f_r||_{\ell^2(\Omega)}^2 = \langle f - f_r, f - f_r \rangle$$

$$= ||f||_{\ell^2(\Omega)}^2 + ||f_r||_{\ell^2(\Omega)}^2 - 2\langle f, f_r \rangle$$

= constant  $-2\langle f, f_r \rangle$  increasing correlation decreases distance

 $||f-f||^2_{\ell^2(\Omega)}$  is minimum  $\Leftrightarrow \langle f,f_r \rangle$  is maximum

## Correlation Measures (cont'd)

What if our template and test image have different intensity ranges?

Centered correlation

$$\langle f - \bar{f}, f_r - \bar{f}_r \rangle = \sum_{\mathbf{k} \in \Omega} (f[\mathbf{k}] - \bar{f})(f_r[\mathbf{k}] - \bar{f}_r)$$

average value

$$\bar{g} = \frac{1}{\#\Omega} \sum_{\mathbf{k} \in \Omega} g[\mathbf{k}]$$

Normalized correlation coefficient

$$-1 \le \rho(f, f_r) = \frac{\langle f - \bar{f}, f_r - \bar{f}_r \rangle}{\|f - \bar{f}\|_{\ell^2(\Omega)} \|f_r - \bar{f}_r\|_{\ell^2(\Omega)}} \le 1$$

Invariant to linear amplitude scalings: af + b

#### **Matched-Filter Detection**

- Measurement model (signal + noise):  $f[k] = s[k k_0] + n[k]$ 
  - s: known deterministic template or pattern
  - n: additive **white** noise with zero mean and variance  $\sigma^2$
  - ${m k}_0$ : unknown template location

$$\mathbf{E}[f[\mathbf{k}]] = s[\mathbf{k} - \mathbf{k}_0]$$

Goal: Design a correlation-like detector

$$g[m{k}] = (h*f)[m{k}]$$
 
$$= \sum_{m{n} \in \mathbb{Z}^2} h[m{n}] f[m{k} - m{n}] \ = \sum_{m{n} \in \mathbb{Z}^2} w[m{n}] f[m{k} + m{n}]$$
 "convolution" "correlation"

where  $w[\mathbf{k}] = h[-\mathbf{k}]$ 

### **Matched-Filter Detection**

• Optimal detector: Maximizes SNR at  $k = k_0$ 

Solution: w[k] = s[k] (matched filter)

(technically,  $w[k] = \alpha s[k]$  is fine, for any  $\alpha \in \mathbb{R}$ )

#### **Proof:**

"signal" Expected output at 
$$m{k}=m{k}_0$$
  $\mathbf{E}[g[m{k}_0]]=\sum_{m{n}\in\mathbb{Z}^2}w[m{n}]s[m{k}_0-m{k}_0+m{n}]$ 

$$=\langle w,s\rangle$$

(squared) uniose" Variance output 
$$var(g[{\pmb k}]) = \sum_{{\pmb n} \in \mathbb{Z}^2} w[{\pmb n}]^2 var(n[{\pmb k}+{\pmb n}]) = \sigma^2 \|w\|_{\ell^2(\mathbb{Z}^2)}^2$$

SNR at 
$${m k}={m k}_0$$
: SNR  $=rac{\langle w,s
angle}{\sigma\|w\|_{\ell^2(\mathbb{Z}^2)}}$ 

Maximized when  $w[k] = \alpha s[k]$ 

## Pattern Detection by Template Matching



Application: Line detector



## Pattern Detection by Template Matching

Reference template  $(33 \times 31 \text{ pixels})$ 





$$(x, y) = (149, 95)$$
  
 $\rho = 100\%$ 

31





$$(x, y) = (98, 123)$$
 $\rho = 88\%$ 





$$(x, y) = (58, 61)$$
 $\rho = 33\%$ 

#### **Feature Extraction**

Edge detection

Edges are important clues for the interpretation of images; they are essential to object recognition

- Edges: Analog formulation
- Gradient-based edge detection

## **Edges: Analog Formulation**

## What is an edge?

**Definition:** An edge point is a location of abrupt change in an image





Image value at location  $\boldsymbol{x}$ :  $f(\boldsymbol{x})$ 

Normal vector: 
$$oldsymbol{n} = rac{
abla f(oldsymbol{x})}{\|
abla f(oldsymbol{x})\|_2}$$

⇒ direction of maximum change

## **Gradient and Directional Derivatives**

- Gradient of f at  $\mathbf{x}=(x,y)$ :  $\nabla f(\mathbf{x})=\left(\frac{\partial f(\mathbf{x})}{\partial x},\frac{\partial f(\mathbf{x})}{\partial y}\right)=(f_1(\mathbf{x}),f_2(\mathbf{x}))$
- Directional derivative of f along the unit vector  $m{u}_{ heta} = (\cos heta, \sin heta)$

$$D_{\boldsymbol{u}_{ heta}}f(\boldsymbol{x}) = \lim_{arepsilon o 0} rac{f(\boldsymbol{x} + arepsilon \boldsymbol{u}_{ heta}) - f(\boldsymbol{x})}{arepsilon}$$
 Taylor-series argument:  $f(\boldsymbol{x} + arepsilon \boldsymbol{u}) = f(\boldsymbol{x}) + arepsilon \boldsymbol{u}^{\mathsf{T}} \nabla f(\boldsymbol{x}) + O(arepsilon^2)$ 
 $= \boldsymbol{u}_{ heta}^{\mathsf{T}} \nabla f(\boldsymbol{x})$ 

**Exercise:** What is  $\max_{\theta} D_{\boldsymbol{u}_{\theta}} f(\boldsymbol{x})$  ?

$$\max = D_{\mathbf{n}} f(\mathbf{x}) = \|\nabla f(\mathbf{x})\|_2 = \sqrt{f_1(\mathbf{x})^2 + f_2(\mathbf{x})^2}$$

$$\theta^* = \angle(\nabla f(\mathbf{x})) = \arctan\left(\frac{f_2(\mathbf{x})}{f_1(\mathbf{x})}\right) + k\pi, k \in \mathbb{Z} \qquad (\bot \text{ to edge})$$

## **General Criteria for Edge Detection**

- Maximum of the gradient
- Zero crossings of the second-order (directional) derivative
- Combination of both

#### Remarks:

- Gradient magnitude and Laplacian are **rotationally invariant**, while gradient vectors and directional second-order derivatives are not
- Derivatives are usually estimated on a smoothed version of the image to improve robustness and/or reduce the effect of noise

## **Gradient-Based Edge Detection**

#### How do we design discrete filters that mimic gradients?

Discretized gradient operators

Horizontal derivative:  $g_1[\mathbf{k}] = (h_1 * f)[\mathbf{k}]$ 

Vertical derivative:  $g_2[\mathbf{k}] = (h_2 * f)[\mathbf{k}]$ 

$$g[\mathbf{k}] = \sqrt{g_1[\mathbf{k}]^2 + g_2[\mathbf{k}]^2}$$

$$\theta[\mathbf{k}] = \arctan\left(\frac{g_2[\mathbf{k}]}{g_1[\mathbf{k}]}\right)$$

Threshold-based edge detection

$$edge[\mathbf{k}] = \begin{cases} 1, & g[k_1, k_2] \ge T \\ 0, & else \end{cases}$$

$$\partial_x pprox \boxed{rac{1}{2} \mid 0 \mid -rac{1}{2} \mid}$$

$$\partial_y pprox egin{bmatrix} rac{1}{2} \\ \hline 0 \\ -rac{1}{2} \end{bmatrix}$$

## Canny's Edge Detection Algorithm

- Refinements:
  - Non-maxima suppression: Using knowledge of  $\theta[k]$
  - Intelligent thresholding



https://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

## **Image Segmentation**

- Segmentation: Art or Science?
- Amplitude Thresholding
  - Variational Thresholding
  - Statistical Thresholding
- Binary Segmentation Techniques

# What is Segmentation?

Definition

Image f[k], with  $k \in \Omega$ 

Image segmentation: Find a partition of the support  $\Omega$  of the image f, with

$$\Omega = \bigcup_i \Omega_i$$
 with  $\Omega_i \cap \Omega_j = \emptyset$  for  $i \neq j$ 

such that the regions  $\Omega_i$  satisfy some homogeneity (and connectivity) criterion.



The total number of regions is not necessarily known

- Three main approaches (not based on deep learning)
  - Pixel classification
  - Region-based segmentation
  - Boundary-based segmentation  $\Rightarrow$  Edge detection

## Segmentation: Art or Science?

Problem: lack of a universal definition of homogeneity ⇒ many application-specific approaches

- Approaches for specifying homogeneity
  - Empirical (e.g., similar graylevels; feature maps)
  - Statistical, based on some a priori model (e.g., constant mean + additive white noise)
- Approaches for enforcing connectivity (if required)
  - Prior information about object size or shape
  - Joint probability model for class labels
  - Contour length