ECE 172A: Introduction to Image Processing Image Processing Tasks: Part I

Rahul Parhi Assistant Professor, ECE, UCSD

Winter 2025

Outline

- Preprocessing
 - Histogram
 - Normalization
 - Combining Images
 - Spatial Averaging
- Matching and Detection
 - Correlation
 - Matched Filtering
- Feature Extraction
 - Contour/Edge Detection
- Segmentation
 - Variational Thresholding
 - Connected-Component Labeling

Preprocessing

- Histogram
- Normalization
- Combining Images
- Spatial Averaging
 - Linear Smoothing
 - Median Filtering

Graylevel Histogram

Input image: $r[{\pmb k}]$ with ${\pmb k}\in\Omega=\{0,\ldots,K-1\}\times\{0,\ldots,L-1\}$

Total number of pixels: $\#\Omega = KL$

Graylevel distribution

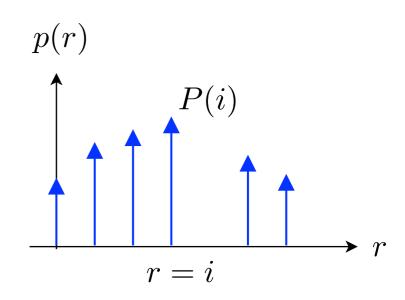
p.d.f.
$$p(r)$$
 with $\int_{-\infty}^{\infty} p(r) dr = 1$

Histogram

Quantized graylevels: $\{0, 1, 2, \dots, N-1\}$ n_i : number of pixels with graylevel i

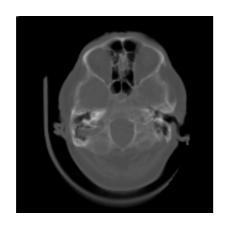
$$P(i) = \frac{n_i}{\#\Omega}$$
: probability of graylevel i

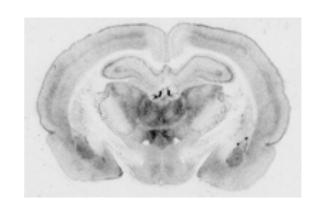
Probability mass function (p.m.f.)

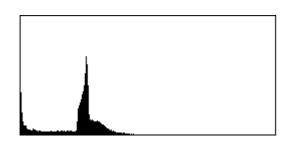


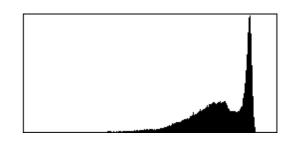
$$p(r) = \sum_{i=0}^{N-1} P(i)\delta(r-i)$$

Examples of Histograms









What can we do with these histograms?

- Reading the histogram can tell us about:
 - Dynamic range
 - Potential saturation problems
 - Average intensities of background and objects

Normalization: Linear Contrast Adjustment

Linear transformation/system: $T\{f\}[k] = \alpha(f[k]-\beta)$ with parameters $\alpha, \beta \in \mathbb{R}$

How to we implement full dynamic-range contrast stretching?

$$\beta = \min\{f[\mathbf{k}] : \mathbf{k} \in \Omega \subset \mathbb{Z}^2\} \qquad \alpha = \frac{255}{\max_{\mathbf{k}}\{f[\mathbf{k}]\} - \min_{\mathbf{k}}\{f[\mathbf{k}]\}}$$

Image normalization

Average graylevel

$$\mu = \frac{1}{\#\Omega} \sum_{\mathbf{k} \in \Omega} f[\mathbf{k}]$$

Variance

$$\sigma^2 = \frac{1}{\#\Omega} \sum_{\mathbf{k} \in \Omega} (f[\mathbf{k}] - \mu)^2$$

Normalized image statistics:
$$T\{f\}[k] = a \left(\frac{f[k] - \mu}{\sigma}\right) + b$$

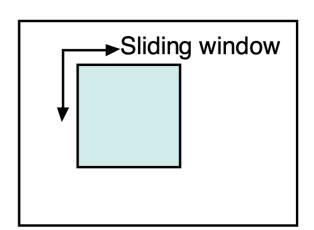
"zero mean and unit variance"

Localized Normalization

Compensation of non-uniformities across the image; e.g., shading, nonuniform background, changes in illumination

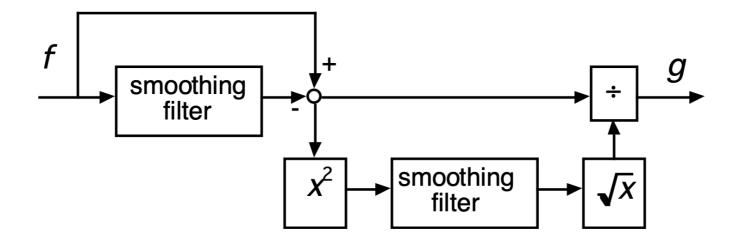
Normalization over a sliding window:

$$g[\mathbf{k}] = a \left(\frac{f[\mathbf{k}] - \tilde{\mu}[\mathbf{k}]}{\tilde{\sigma}[\mathbf{k}]} \right) + b$$



$$\tilde{\mu}[\mathbf{k}] = \sum_{\mathbf{n}} w[\mathbf{n}] f[\mathbf{n} - \mathbf{k}]$$

$$\sum_{k} w[k] = 1$$



https://bigwww.epfl.ch/demo/ip/demos/local-normalization/

Smoothing filter implements local averaging \Rightarrow Estimation of local statistics

Combining Images

- Averaging for noise reduction:
 - Independent noisy observations: $f_i[\mathbf{k}] = s[\mathbf{k}] + n_i[\mathbf{k}], \quad i = 1, \dots, N$
 - Hypotheses:
 - (i) $\mathbf{E}[f_i[\mathbf{k}]] = s[\mathbf{k}] \implies \mathbf{E}[n_i[\mathbf{k}]] = 0$
 - (ii) i.i.d. noise at each location $k \Rightarrow var(f_i[k]) = var(n_i[k]) = \sigma^2$
 - Noise reduction procedure: $ar{f}[m{k}] = rac{1}{N} \sum_{i=1}^N f_i[m{k}]$

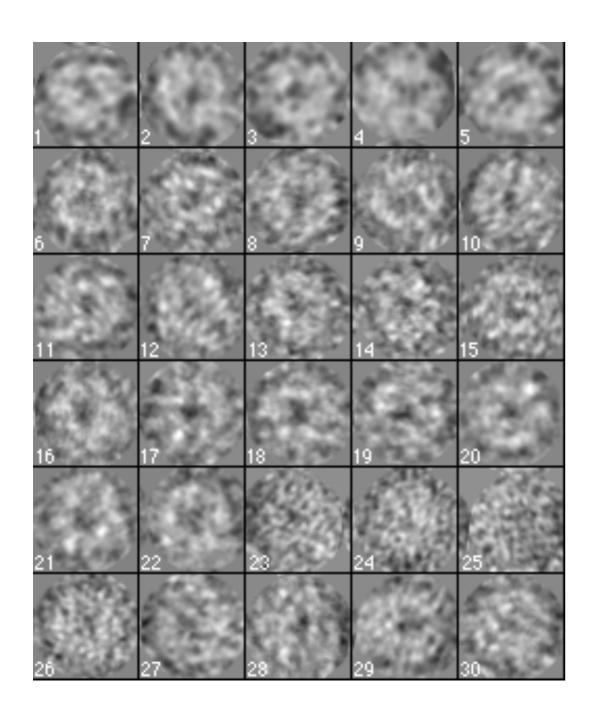
Exercise: Determine the mean and variance of $\bar{f}[k]$

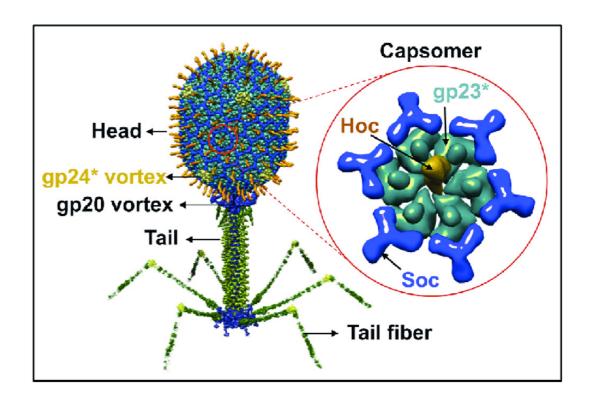
Mean: $\mathbf{E}[\bar{f}[\mathbfit{k}]] = s[\mathbfit{k}]$ Variance: $\mathrm{var}(\bar{f}[\mathbfit{k}]) = \sigma^2/N$

Central limit theorem: for large N, $\bar{f}[k] \sim \mathcal{N}(s[k], \sigma^2/N)$

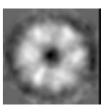
Example: Noise Reduction

20 electron micrographs of a virus capsomere





Result of averaging:



Practical problems

- Image registration
- Detection of outliers

Spatial Averaging: Linear Smoothing

Linear smoothers = Low-pass filters g = h * f with $\sum_{k} h[k] = 1$

$$g = h * f$$
 with $\sum_{\mathbf{k}} h[\mathbf{k}] = 1$

Finite-impulse response (FIR)

Moving average

$$\begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1/8 & 0 \\ 1/8 & 1/2 & 1/8 \\ 0 & 1/8 & 0 \end{bmatrix}$$

- Infinite-impulse response (IIR)
 - Symmetric exponential
 - Gaussian filter
- Main uses
 - noise reductions (high frequencies)
 - estimation of local statistics (mean, variance)

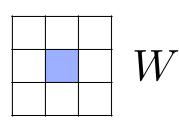
- Limitations
 - Blurring of edges and image details

How do we get around this?

Nonlinear operations

Spatial Averaging: Median Filter

$$g[k] = \text{median}\{f[k-n] : n \in W\}$$



Input (200×200)

 5×5 median filtered

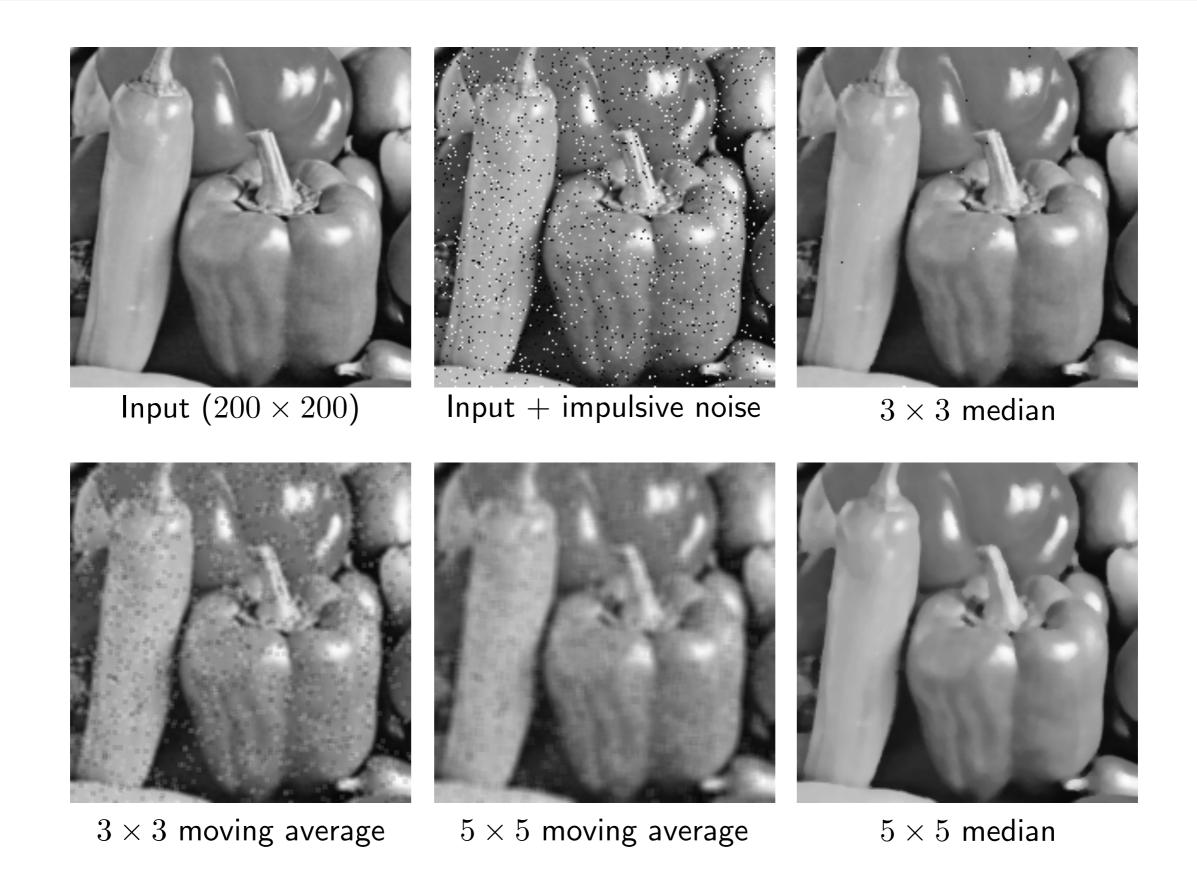
Advantages

- Tend to preserve contours better than linear smoothers
- Good for impulsive or heavy-tailed (non-Gaussian) noise

Limitations

- Computationally costly for large sizes of neighborhoods
- Breaks down when there is a majority of noisy pixels

Impulsive-Noise Reduction Experiment



Matching and Detection

- Template Matching
 - Problem Definition
 - Correlation
- Matched-Filter Detection
- Application Areas
 - Object Detection
 - Automated Inspection
 - Data Fusion
 - Registration
 - Motion Compensation

Template Matching

Problem definition

- Reference pattern, target, or template: $f_r[k]$, $k \in \Omega_r$
- Test image: $f[{m k}]$, ${m k} \in \Omega_f$
- Common support $\Omega = \Omega_f \cap \Omega_r \neq \emptyset$
- How do we decide whether or not f and f_r are similar?
- Given a collection of templates f_i , i = 1, ..., N (e.g., shifted versions of some reference template), how do we select the best match?

Exercise: Come up with a concrete instantiation of this sort of problem

Correlation Measures

Basic correlation

$$\sum_{\mathbf{k}\in\Omega}f[\mathbf{k}]f_r[\mathbf{k}] = \langle f, f_r \rangle$$

 $\ell^2(\Omega)$ -inner product

How is maximizing the correlation related to the similarity between f and f_r ?

Similarity = distance =
$$||f - f_r||_{\ell^2(\Omega)}$$

$$||f - f_r||_{\ell^2(\Omega)}^2 = \langle f - f_r, f - f_r \rangle$$

$$= ||f||_{\ell^2(\Omega)}^2 + ||f_r||_{\ell^2(\Omega)}^2 - 2\langle f, f_r \rangle$$

= constant $-2\langle f, f_r \rangle$ increasing correlation decreases distance

 $||f-f||^2_{\ell^2(\Omega)}$ is minimum $\Leftrightarrow \langle f,f_r \rangle$ is maximum

Correlation Measures (cont'd)

What if our template and test image have different intensity ranges?

Centered correlation

$$\langle f - \bar{f}, f_r - \bar{f}_r \rangle = \sum_{\mathbf{k} \in \Omega} (f[\mathbf{k}] - \bar{f})(f_r[\mathbf{k}] - \bar{f}_r)$$

average value

$$\bar{g} = \frac{1}{\#\Omega} \sum_{\mathbf{k} \in \Omega} g[\mathbf{k}]$$

Normalized correlation coefficient

$$-1 \le \rho(f, f_r) = \frac{\langle f - \bar{f}, f_r - \bar{f}_r \rangle}{\|f - \bar{f}\|_{\ell^2(\Omega)} \|f_r - \bar{f}_r\|_{\ell^2(\Omega)}} \le 1$$

Invariant to linear amplitude scalings: af + b

Matched-Filter Detection

- Measurement model (signal + noise): $f[k] = s[k k_0] + n[k]$
 - s: known deterministic template or pattern
 - n: additive **white** noise with zero mean and variance σ^2
 - ${m k}_0$: unknown template location

$$\mathbf{E}[f[\mathbf{k}]] = s[\mathbf{k} - \mathbf{k}_0]$$

Goal: Design a correlation-like detector

$$g[m{k}] = (h*f)[m{k}]$$

$$= \sum_{m{n} \in \mathbb{Z}^2} h[m{n}] f[m{k} - m{n}] \ = \sum_{m{n} \in \mathbb{Z}^2} w[m{n}] f[m{k} + m{n}]$$
 "convolution" "correlation"

where $w[\mathbf{k}] = h[-\mathbf{k}]$

Matched-Filter Detection

• Optimal detector: Maximizes SNR at $k = k_0$

Solution: w[k] = s[k] (matched filter)

(technically, $w[k] = \alpha s[k]$ is fine, for any $\alpha \in \mathbb{R}$)

Proof:

"signal" Expected output at
$$m{k}=m{k}_0$$
 $\mathbf{E}[g[m{k}_0]]=\sum_{m{n}\in\mathbb{Z}^2}w[m{n}]s[m{k}_0-m{k}_0+m{n}]$

$$=\langle w,s\rangle$$

(squared) uniose" Variance output
$$var(g[{\pmb k}]) = \sum_{{\pmb n} \in \mathbb{Z}^2} w[{\pmb n}]^2 var(n[{\pmb k}+{\pmb n}]) = \sigma^2 \|w\|_{\ell^2(\mathbb{Z}^2)}^2$$

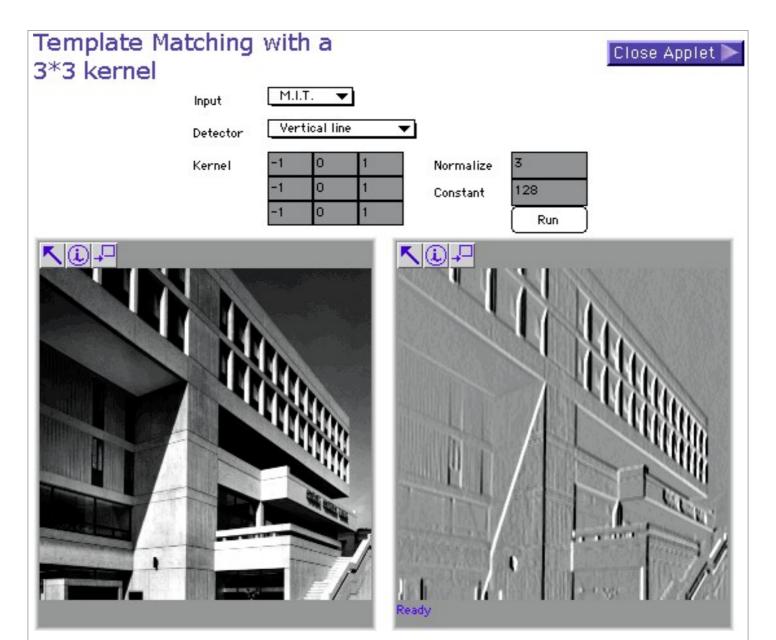
SNR at
$${m k}={m k}_0$$
: SNR $=rac{\langle w,s
angle}{\sigma\|w\|_{\ell^2(\mathbb{Z}^2)}}$

Maximized when $w[k] = \alpha s[k]$

Pattern Detection by Template Matching

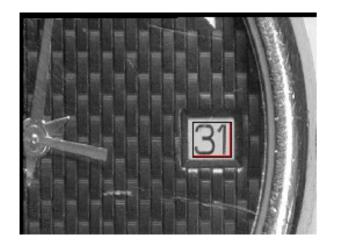


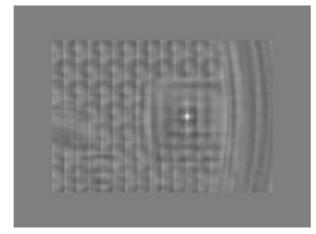
Application: Line detector



Pattern Detection by Template Matching

Reference template $(33 \times 31 \text{ pixels})$

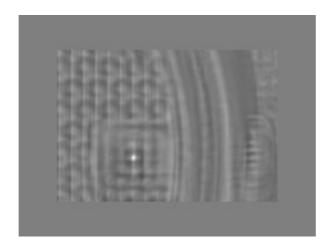




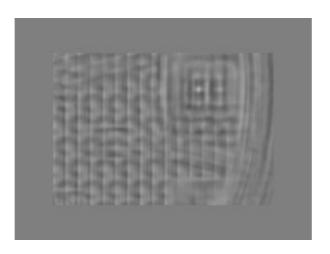
$$(x, y) = (149, 95)$$

 $\rho = 100\%$

31



$$(x, y) = (98, 123)$$
 $\rho = 88\%$



$$(x, y) = (58, 61)$$
 $\rho = 33\%$

Feature Extraction

Edge detection

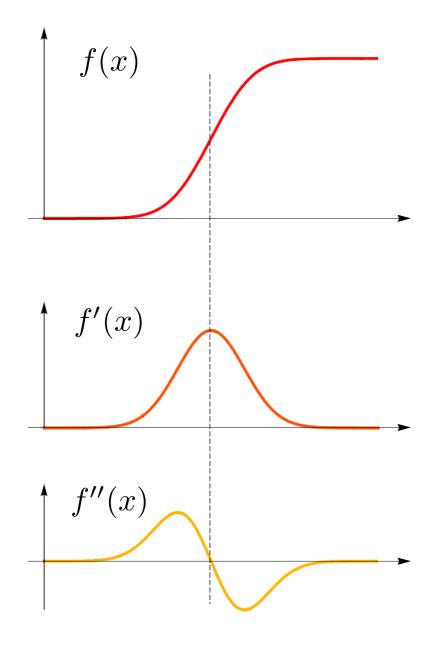
Edges are important clues for the interpretation of images; they are essential to object recognition

- Edges: Analog formulation
- Gradient-based edge detection

Edges: Analog Formulation

What is an edge?

Definition: An edge point is a location of abrupt change in an image



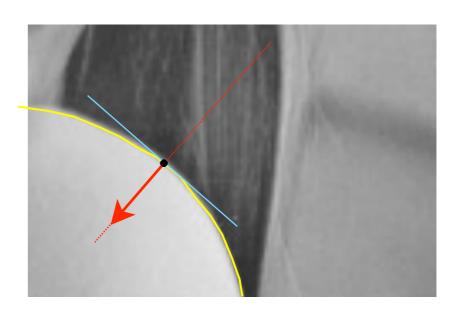


Image value at location \boldsymbol{x} : $f(\boldsymbol{x})$

Normal vector:
$$oldsymbol{n} = rac{
abla f(oldsymbol{x})}{\|
abla f(oldsymbol{x})\|_2}$$

⇒ direction of maximum change

Gradient and Directional Derivatives

- Gradient of f at $\mathbf{x}=(x,y)$: $\nabla f(\mathbf{x})=\left(\frac{\partial f(\mathbf{x})}{\partial x},\frac{\partial f(\mathbf{x})}{\partial y}\right)=(f_1(\mathbf{x}),f_2(\mathbf{x}))$
- Directional derivative of f along the unit vector $m{u}_{ heta} = (\cos heta, \sin heta)$

$$D_{\boldsymbol{u}_{ heta}}f(\boldsymbol{x}) = \lim_{arepsilon o 0} rac{f(\boldsymbol{x} + arepsilon \boldsymbol{u}_{ heta}) - f(\boldsymbol{x})}{arepsilon}$$
 Taylor-series argument: $f(\boldsymbol{x} + arepsilon \boldsymbol{u}) = f(\boldsymbol{x}) + arepsilon \boldsymbol{u}^{\mathsf{T}} \nabla f(\boldsymbol{x}) + O(arepsilon^2)$
 $= \boldsymbol{u}_{ heta}^{\mathsf{T}} \nabla f(\boldsymbol{x})$

Exercise: What is $\max_{\theta} D_{\boldsymbol{u}_{\theta}} f(\boldsymbol{x})$?

$$\max = D_{\mathbf{n}} f(\mathbf{x}) = \|\nabla f(\mathbf{x})\|_2 = \sqrt{f_1(\mathbf{x})^2 + f_2(\mathbf{x})^2}$$

$$\theta^* = \angle(\nabla f(\mathbf{x})) = \arctan\left(\frac{f_2(\mathbf{x})}{f_1(\mathbf{x})}\right) + k\pi, k \in \mathbb{Z} \qquad (\bot \text{ to edge})$$

General Criteria for Edge Detection

- Maximum of the gradient
- Zero crossings of the second-order (directional) derivative
- Combination of both

Remarks:

- Gradient magnitude and Laplacian are **rotationally invariant**, while gradient vectors and directional second-order derivatives are not
- Derivatives are usually estimated on a smoothed version of the image to improve robustness and/or reduce the effect of noise

Gradient-Based Edge Detection

How do we design discrete filters that mimic gradients?

Discretized gradient operators

Horizontal derivative: $g_1[\mathbf{k}] = (h_1 * f)[\mathbf{k}]$

Vertical derivative: $g_2[\mathbf{k}] = (h_2 * f)[\mathbf{k}]$

$$g[\mathbf{k}] = \sqrt{g_1[\mathbf{k}]^2 + g_2[\mathbf{k}]^2}$$

$$\theta[\mathbf{k}] = \arctan\left(\frac{g_2[\mathbf{k}]}{g_1[\mathbf{k}]}\right)$$

Threshold-based edge detection

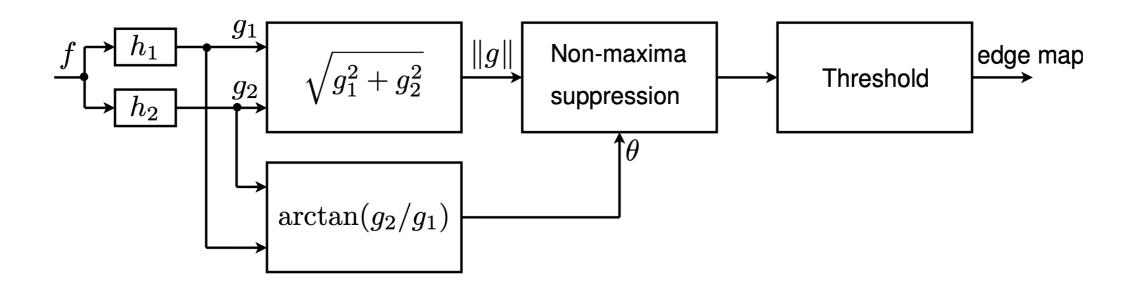
$$edge[\mathbf{k}] = \begin{cases} 1, & g[k_1, k_2] \ge T \\ 0, & else \end{cases}$$

$$\partial_x pprox \boxed{rac{1}{2} \mid 0 \mid -rac{1}{2} \mid}$$

$$\partial_y pprox egin{bmatrix} rac{1}{2} \\ \hline 0 \\ -rac{1}{2} \end{bmatrix}$$

Canny's Edge Detection Algorithm

- Refinements:
 - Non-maxima suppression: Using knowledge of $\theta[k]$
 - Intelligent thresholding



https://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Image Segmentation

- Segmentation: Art or Science?
- Amplitude Thresholding
 - Variational Thresholding
 - Statistical Thresholding
- Binary Segmentation Techniques

What is Segmentation?

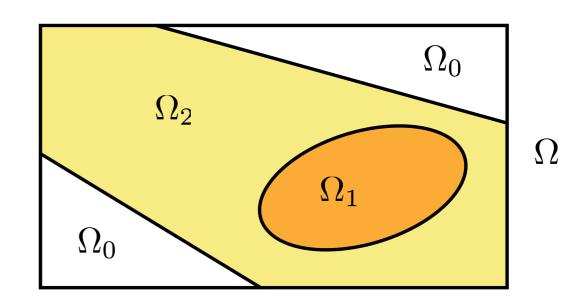
Definition

Image f[k], with $k \in \Omega$

Image segmentation: Find a partition of the support Ω of the image f, with

$$\Omega = \bigcup_i \Omega_i$$
 with $\Omega_i \cap \Omega_j = \emptyset$ for $i \neq j$

such that the regions Ω_i satisfy some homogeneity (and connectivity) criterion.



The total number of regions is not necessarily known

- Three main approaches (not based on deep learning)
 - Pixel classification
 - Region-based segmentation
 - Boundary-based segmentation \Rightarrow Edge detection

Segmentation: Art or Science?

Problem: lack of a universal definition of homogeneity ⇒ many application-specific approaches

- Approaches for specifying homogeneity
 - Empirical (e.g., similar graylevels; feature maps)
 - Statistical, based on some a priori model (e.g., constant mean + additive white noise)
- Approaches for enforcing connectivity (if required)
 - Prior information about object size or shape
 - Joint probability model for class labels
 - Contour length